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Background

AIRS + CrIS Lifetimes Entering Climate Regime

AIRS products developed for NWP
Is our existing approach going to meet climate
requirements?
How will we connect AIRS + CrIS + IASI, etc.?

Climate Requirements/Users

Can Level 2 provide accurate Level 3 climatologies?
How provide error characterization and traceability?
Data processing should be as simple as possible so
reproducible by others (and is widely understood).
Open source

AIRS/CrIS/IASI brings a tremendous improvement to climate
trending with high vertical sensitivity for T(z), H2O (z), etc.
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Conclusion:" An advanced higher accuracy climate observing system would return $50 for every $1 invested in the improved observations !

Why? 
Science is an economic investment by the public.  We will be managing Earth’s 
climate until civilization moves elsewhere.  We currently have no national or 
international climate observing system, nor a plan to create one.   Should we 
invest in one? Is it worth it?!
!
What is  the economic value of  an advanced climate observing system? How 
would you estimate it?  !
!
We have a few traceable estimates of the economic value of weather prediction 
for severe storms, hurricanes, floods and droughts.  Climate scientists often say 
that the results from their research “will inform societal decisions with trillion 
dollar impacts”.  !
!
But is this statement verified and traceable in any way?  How could we quantify 
an economic value to climate science?  Recall that climate change science value 
exists  decades  into  the  future.   Its  value  has  to  be  treated  as  a  risk/benefit 
economic analysis.  A rigorous analysis must take into account the uncertainties 
in climate science, economic impacts, and policy (see Figure 1 below).!
!
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!
!
!
!
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!
!
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!
!
!
!
!
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!
Science value and economic frameworks are potentially valuable for strategic 
planning  of  the  Earth  observing  system,  as  well  as  communicating  climate 
research  value  to  society.   We  present  in  this  paper  a  new methodology  to 
estimate the economic value to society of advanced climate observing systems.!

How? 

In this case the factor of 4 uncertainty in climate sensitivity causes a factor of 
16 uncertainty in long term economic impacts, which leads to inefficient and 
uncertain solutions for climate change.!
!
Society (and climate science)  views past  climate change through two sets  of 
"fuzzy" lenses.  The first is natural variability in the climate system which acts as 
noise to confuse early signals of anthropogenic climate change.  The second is 
uncertainty in our observations of climate change, including drifting calibration 
of  instruments  or  orbit  sampling  uncertainties.   Figure  2  below  shows  an 
example  of  these  uncertainties  for  observing  one  of  the  critical  measures  of 
climate sensitivity: changes in the amount of global mean solar energy reflected 
back to space by clouds as climate changes.  !
!
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!
!
!
The black line shows climate trend uncertainty for a perfect observing system 
limited only by one fuzzy lens: that of natural variability.  The dashed lines add 
the absolute calibration uncertainty of the current highest accuracy cloud related 
space  instruments  including  MODIS (cloud  physical  properties)  and  CERES 
(broadband reflected solar radiation to observe SW CRF directly).  The blue line 
shows the accuracy from the future CLARREO (Climate Absolute Radiance and !
Refractivity Observatory) mission which advances accuracy a factor of 5 to 10 
over current instruments (Wielicki et al., 2013).  !
!
CLARREO is designed to serve as reference calibration spectrometers for the 
entire  reflected solar  and thermal  infrared spectrum.  Its  orbit  is  designed to 
underfly all geostationary and low earth orbit satellites with matched time/space/
angle  of  view  observations,  and  thereby  provide  the  SI  standard  reference 
calibration system in orbit to allow instruments such as CERES, MODIS, VIIRS, 
CrIS,  IASI,  Landsat  and  others  to  maintain  highly  stable  calibration  over 
decades, even if gaps in observations occur (Wielicki et al., 2013)!
!
The IPCC climate model range of trend values are shown in the green arrow at 
the lower left  of  Figure 2.   Figure 2 shows that  advances in accuracy can 
advance by 20 years the ability to observe cloud feedbacks and thereby narrow 
uncertainty in climate sensitivity.  !
!
!

Figure 3 shows a similar example for observations of global mean temperature 
trends from space-borne instruments.  The conclusions are similar.!
!
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Given these results, what would an advance of 15 to 20 years in climate change 
knowledge  mean  in  terms  of  economic  impacts  of  climate  change?   The 
schematic below shows how to test such a concept.  The concept uses the climate 
accuracy framework from Wielicki  et  al.  2013 developed for  the CLARREO 
mission, and combines it with the SCC, 2010 estimates of future climate impacts 
for varying levels of warming, and the DICE 2009 integrated assessment model 
(Nordhaus,  2008)  which  links  models  of  climate  physics,  economic 
development,  and  economic  impacts.   The  schematic  below  shows  the 
dependence  of  economic  impacts  from  climate  change  on  societal  decision 
points, which are in turn dependence on the accuracy of climate observations.!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
The DICE model  is  run for  1000s  of  simulations  varying climate  sensitivity 
(SCC,  2010  distribution),  natural  variability  realizations,  and  emissions 
scenarios.!
!
!
!
!

Before we discuss the results, we need a quick version of Economics 101.  First, 
the global Gross Domestic Product (GDP) per year is about $70 Trillion U.S. 
dollars.  Second, economics calculations use a concept called Net Present Value 
(NPV) to equate investments and returns over long time intervals.  To do this, a 
Discount Rate is used, which varies in the SCC, 2010 report from 5% to 3% to 
2.5%.  The effect of using the nominal 3% Discount Rate is that the economic 
benefits  gained in the future are discounted by 3% per  year,  so that  benefits 
gained 50 years from now are "discounted" by a factor of 1.0350, or a factor of 
4.4.  This means that economic benefits 50 years into the future are decreased by 
a factor of ~ 4.4, while benefits 100 years into the future are decreased by a 
factor of ~ 20.  Finally, the recent financial crisis affected worldwide GDP by a 
few percent.  This is similar to the economic impacts of climate change in the 
second half of this century, which are expected to range from 0.5% to 5% of 
GDP per  year  depending  on  climate  sensitivity  and  the  amount  of  warming 
realized.  Therefore future climate change impacts can range from $0.4T to 
$3.5T per year. !
!
The calculations in this study use a baseline scenario of a societal trigger when 
95% confidence is reached for a global average temperature increase of 0.2C/
decade,  and an advanced full  climate  observing system begins  in  2020.   All 
initial calculations use a simple switch from higher to lower emissions scenarios.!
!
!
!
!
!
!
!
!
!
Table 1 summarizes the results, and shows a NPV of $12 Trillion U.S. dollars 
for the nominal 3% discount rate.  While the CLARREO example of advanced 
accuracy  has  been  used  in  this  initial  estimate,  society  would  never  base  a 
decision on any one set of instruments, so this economic value should be viewed 
as  that  of  an  advanced  full  Climate  Observing  System,  which  CLARREO 
would be a key part of.  If we estimate that such a system would cost 4 times the 
current  investment  in  world  climate  research  of  about  $4B/yr.,  then  over  30 
years, the additional cost in NPV would be about 1/50th of the benefits shown in 
Table 1. Every $1 invested returns $50.  We also examined sensitivity of the 
results to the assumed baseline parameters by changing the warming rate from 
0.2C to 0.3C/decade for the societal decision trigger, by varying the statistical 
confidence required (80 to  99%) and the severity  of  the  emissions  reduction 
scenario (moderate or severe).  In all cases, the economic value remained within 
about  30%  of  the  values  in  Table  1.   The  results  of  this  study  have  been 
published in the Journal of Environment, Systems, and Decisions (Cooke et al., 
2013).  Future developments of this new framework will use recent updates in 
the social cost of carbon estimates, add mitigation costs,  improve the realism of 
societal decision triggers and consider the uncertainties of additional key climate 
change observations including ice sheets, aerosol forcing, and carbon cycle. !
!
References!
Wielicki, B. A. et al., Bull. Amer. Met. Soc. Oct. 2013!
Cooke, R. et al., J. Environ. Sys. Decisions, 2013, open access online.!
US Interagency Social Cost of Carbon Memo, 2010!
Nordhaus, W.D. "A question of balance: weighing the options on global warming 
policies". Yale University Press, New Haven, 2008!

Results 

Figure'1'

Figure'2'

The uncertainty of societal decisions on climate change is strongly affected by 
the uncertainty in the future predictions of climate change.  For example, the 
90% confidence bound for equilibrium climate sensitivity is a factor of 4 (IPCC, 
2013).  Climate sensitivity defines the relationship between an increase in carbon 
dioxide  in  the  atmosphere  and  the  amount  of  global  surface  air  temperature 
change.  Studies of the economic impacts of climate change (Interagency Social 
Cost of Carbon Memo, 2010, hereafter SCC) suggest a quadratic relationship 
between amount of global temperature change and the magnitude of economic 
impacts.  !

Figure'3'

Figure'4'

Table'1'

AIRS stability will become
more important with time.

AIRS+CrIS: 13+ Years

Work by S. Leroy shows
transition after ∼ 12 years

After which instrument
accuracy/stability is
dominant error source

Are the instrument labels
correct??

AIRS stability ∼ 0.002K/year?

AIRS + CrIS SNO difference
stats imply “stiching
knowledge” to well below
0.01K

Convert AIRS to CrIS ILS for
radiance time series



4

Introduction Approach Trends Conclusions

Alternative Retrieval Path for Climate Trending

Two Approaches

1 Derive trends and anomalies in radiance space, then
retrieve geophysical variables

2 Examine trends in Probablity Distribution Functions
(PDFs) of single channels to focus on extremes).

T(z) and H2O(z) “Level 3” profile trends and anomalies are
key for climate monitoring.

Can we determine L3 errors using this approach?

We just received a NASA Roses award to examine how well
AIRS + CrIS can be combined for climate-level trending.
(Note: We need L1c for this work!)
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Continuation of AIRS with CrIS: A Proposal
AIRS L1c is a key ingredient

AIRS only: using L1c means only one RTA! That is good!
L1c makes it easier for others to look at AIRS radiances
(public relations mostly, but we need it)
Convert AIRS to (some TBD) version of CrIS ILS (SNO work
below shows we can do this, if we have L1c)
Convert AIRS to (some version) of CrIS ILS, modify noise

Single RTA! Different ILS means different sensitivities and
different RTA accuracies.
Well understood conversion, not statistical
Minimizes effect of ILS on retrievals
Only way to stitch together AIRS and CrIS/IASI and
remove radiometric differences from the climate record.

This approach makes the processing system simpler in the
long run.
We will be testing this approach in the context of the work
shown here using radiance-based trends and anomalies
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SNO’s Used to Stitch AIRS to CrIS
AIRS SNOs converted to CrIS ILS
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IASI could be used as a “third-party” if CrIS and AIRS are
not simultaneously in orbit

AIRS-IASI SNOs that are only at high latitudes appear very
similar to AIRS-CrIS SNOs at all latitudes, on average.
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Radiance Based Trending

Operate in radiance space as long as possible (error
traceability)

Lower data volumes (1-2% for some products)

Data averaging (gridded, zonal)

Adopt OE retrieval framework with scattering RTA:
a-priori for trends is zero.

Using a L1-type Tikhonov empirical smoother with some
help from an estimated a-priori covariance.

13-year T(z), H2O (z) anomalies (zonal) can be processed in
1-2 hours on 40 cpu cores! (Years to test AIRS V6 Level 3!).
Linear zonal rates just take a minute to run on 100 layers.

Small data set for use by a larger community
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Radiance Time Series and Anomalies

Artic 1231 cm−1 Time Series
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Data Set: 2378 channels by 40 zonal bins
Fit to a constant, a time derivative, and annual sinusoids
and harmonics.
Generate jacobians
Retrieve geophysical rates and anomalies from radiance
rates and anomalies.
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Radiance Trend Examples
Sample Spectral Rates
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Level 2: ∼20K Range, 0.2K Noise or S/N ∼100

Trends: ∼0.02K Range, 0.002K Noise or S/N ∼10

Very different degrees of freedom, kernel functions
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Treatment of Uncertainties in Trends

1 Use simulated data from ERA (one-to-one match with
AIRS obs) to estimate OE parameters (L1 smoothing,
a-priori covariance)

2 Then compare data sets and ignore uncertainty in
spectral rates due to inter-annual variability. Trends
seem too high for all approaches?

3 Scientifically valid trends: include uncertainty in spectral
rates due to geophysical inter-annual variability in UMBC
retrieals, trends greatly reduced. But what about AIRS L3
and ERA trends?

4 What are the proper averaging kernels (AK) for profile
trends?

5 More simluation work needed to set covariance and L1
smoothing. Minimize kernel ringing.
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13-Year Temperature Trends: AIRS (No Obs Errors)

./Figs/Png/obs_temp_smooth.png

UMBC (K/year). ERA × Averaging Kernel (K/year)

./Figs/Png/l3_temp_ak_smooth.png

AIRS Level 3 (K/year) Simulated ERA (K/year)
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13-Year Temperature Trends: AIRS (No Obs Errors)

UMBC (K/year). ERA × Averaging Kernel (K/year)

AIRS Level 3 (K/year) Simulated ERA (K/year)
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13-Year Water Vapor Trends (No Obs Errors)

./Figs/Png/obs_water_smooth.png

UMBC (fraction/year) ERA × Averaging Kernel (fraction/year)

./Figs/Png/l3_water_ak_smooth.png

AIRS Level 3 (fraction/year) Simulated ERA (fraction/year)
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13-Year Water Vapor Trends (No Obs Errors)

UMBC (fraction/year) ERA × Averaging Kernel (fraction/year)

AIRS Level 3 (fraction/year) Simulated ERA (fraction/year)
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13-Year Linear Temperature Trends
Now including BT rate uncertainties. UMBC uncertainty: 0.03K/Decade

UMBC (K/decade). Scale Zoom of UMBC K/decade

Temperature trends lowered by use of linear BT rate
uncertainties (inter-annual variability).

Results sensitive to L1 smoothing, which was set to work well
with simulations.
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T(z) Trend Comparisons with AIRS L3 and ERA
This Work (All trends are K/decade) AIRS L3 with AK w/o Rate Errors

ERA with AK using Full Rate Errors UMBC Averaging Kernels (AK)
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H2O Comparisons with AIRS L3 and ERA? (%/Year)
This Work: Unc = ± 0.05%/year AIRS L3 with AK w/o Rate Errors

ERA with AK using Full Rate Errors UMBC Averaging Kernels (AK)
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13-Year Ozone Trends?
NO application of AK to AIRS Level 3 Ozone

UMBC (fraction/year). AIRS Level 3 (fraction/year)

UMBC Roughly same rates as Sciamachy for 2000-2010,
including latitude dependence in stratosphere.
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Zonal T Trend Examples from the Literature

Zonal trends commonly used in climate/feedback studies
Zonal averages let’s us keep all data in memory
No reason we cannot transition to gridded trends in the
future

change point at the station, representing the effects of
level shifts (tk vary by station and by variable). The
final term ϵ represents small-scale natural variability
and noise, modelled as a Gaussian random process
whose variance is minimized by the model fit. Missing
observations are imputed by Kriging ϵ (in space and
time) and evaluating the other terms at the missing
times, after which the model is refitted, until conver-
gence. Regression of data onto the above equation
ensures that variations in the data will be interpreted
either as natural variability, forced trends or artefacts
depending onwhich theymost closely resemble.

This procedure makes use of information on nat-
ural variability from neighbouring stations, but is
designed to isolate systematic/trend errors; this is fully
successful only if change point times are fully known,
but even with partial knowledge, this approach
improves on other tradiational ones which tend to
spread systematic errors from one station to another
(Sherwood 2007). Resulting trends have relatively
large random errors at individual stations, but these
errors aremore independent, enabling the uncertainty
of an average trend over many stations to be readily
assessed by standard methods (e.g., standard error).
Note also that wind data are used to better identify nat-
ural variations that could affect temperature (and
vice versa) but are not used directly (e.g., via thermal-
wind balance) to constrain temperature, thus trends
obtained here are independent of those obtained by
that approach. Readers are addressed to S08 and refer-
ences therein formore details.

2.2.Modifications for this study
Severalmodifications have beenmade for IUKv2.

First, we found and corrected two minor bugs
affecting how data were smoothed before computing
EOFs. Fortunately this had very little impact on
results.

Second, we include two pressure levels (700 and
400 hPa) that were omitted in the original dataset. The
reason they were omitted before was to give equal

weight to the troposphere and stratosphere in detect-
ing change points; here, we omit these levels only dur-
ing change-point detection, while still including them
subsequently. Multi-level changes points detected
from the other levels are also assumed to exist at these
two levels.

Third, we no longer carry out the third step of
change-point detection nor provide data for stations
reporting only once per day. This is because the homo-
genization of these stations was judged to be unreli-
able, and they were typically not used. The original
study found that the final step and associated round of
homogenization did not have a significant effect on
the results at twice-daily stations.

Fourth, we now include the vector wind U rather
than the wind shear X. The choice by S08 to use shear
was motivated by the local thermal-wind relationship
between wind shear and horizontal temperature gra-
dients. However the vector wind itself will statistically
carry much of the same information, and should be
less noisy; using this also has the significant advantage
of producing a homogenized wind dataset (as opposed
to a shear dataset which was not very useful). While
one previous examination of wind data found no evi-
dence of spurious trends due to instrument artefacts
(Gruber and Haimberger 2008), the large amount of
missing wind data means that our IUK approach will
also add value by infilling missing data intelligently
and allowingmore stations to be utilized.

Fifth and finally, we have expanded the trend basis
to include three terms (third-order polynomial) rather
than one, since forced trends are not necessarily linear.
This should ensure that the 2nd and 3rd order poly-
nomial component amplitudes in the homogenized
data will also be unbiased. S08 dealt with the issue cru-
dely by performing separate homogenizations on two
different time periods of interest, but here we perform
only a single homogenization over thewhole record.

The above modifications had only small effects on
large-scale trends (see below), but sometimes pro-
duced noticeable effects at individual stations. The
most important such effects came from adding non-
linear terms to the trend basis. In the linear-only ver-
sion, station trends 1979–1998 were unexpectedly well
correlated with those post-1998 (e.g., r = 0.90 at 300
hPa among Tropical stations), dominated by stations
with poor temporal data coverage or many change
points whose trends are poorly constrained. This sug-
gests that records were artificially flattened by the fit-
ting procedure. Using 3rd-order polynomials
alleviated this problem, reducing the above correlation
to r = 0.25. This gives us confidence in changes over
periods of a decade or two, and not just those over the
whole record.

Overall, the data show similar characteristics to
those of the original version. The number of change
points detected as a function of time was nearly the
same pre-2005 as found by S08, as expected, in both
cases peaking in the late 1980s and decreasing

Figure 1.Temperature trend 1960–2012 versus latitude and
pressure. The value for each latitude and pressure is the
medians of the trends at individual stations in that (10°)
latitude bin. Units are °C per decade.

3

Environ. Res. Lett. 10 (2015) 054007 SC Sherwood andNNishant
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Zonal H2O Trend Examples from the Literature

GORDON ET AL.: WATER VAPOR FEEDBACK

Figure 3. Zonal average of change in net TOA irradi-
ance for a unit perturbation in water vapor that corresponds
to a 1 K temperature change with fixed relative humidity
(Wm–2 per 100 mb).

above the regression line. This is consistent with Colman
and McAvaney [2009] and Jonko et al. [2013] who find an
increase of water vapor feedback strength in warmer cli-
mates. However, we do not have enough independent points
to constrain higher order moments. So, for simplicity, we
adopt a linear feedback analysis, where slopes of the OLS
regression lines in Figure 2c represent Yq in equation (2).
We employ a bootstrapping method to calculate the regres-
sion coefficients and their errors, whereby we sample neff
months with replacement, where neff is our effective num-
ber of monthly integrations, accounting for auto correlation
in the data. The autocorrelation of the monthly temperature
anomaly falls below a value of 0.5 after a 2 month lag; and
to account for this, we assume that data points are only inde-
pendent after 4 months, reducing the effective number of
points to 22. We then carry out ordinary least squares calcu-
lations [Feigelson and Babu, 1992]. We repeat this process
10,000 times and calculate the mean and 95% confidence
interval of the regression coefficient from this distribution.
Applying this technique to the AIRS observations gives a
water-vapor feedback estimate of 2.19 ˙ 0.38 Wm–2K–1

when using the full ES radiative calculations. Using the ker-
nel technique, we calculate a very similar feedback of 2.14
˙ 0.37 Wm–2K–1. D08, using January AIRS data and the
kernel method, estimate a water vapor feedback factor of

2.04 Wm–2K–1. Forster and Gregory [2006] use the cooling
associated with the eruption of Mt. Pinatubo to estimate a
feedback between 0.9 and 2.5 Wm–2K–1. Our calculation of
this feedback using partial radiative perturbations is simi-
lar to, but at the high end of, the longer-term water vapor
feedback calculated from climate model simulations of the
21st century using the kernel technique (1.5–2.1 Wm–2K–1)
[SH06].

[20] A major source of uncertainty arises from the fact that
our data record is relatively short. Colman and Power [2009]
calculate the water vapor feedback using the PRP method for
both natural variability and transient climate change. They
find that the feedback derived from natural variability is
about two thirds of that in response to transient greenhouse
gas forcing. While our record includes the response of the
climate to increasing greenhouse gases, interannual variabil-
ity, namely the relatively cold La Niña of 2008, has a major
influence on our results. The variability in water vapor dis-
tribution due to interannual fluctuations is different than that
resulting from long-term weakly forced (transient) changes
[Colman and Hanson, 2013; Dalton and Shell, 2013].

[21] To determine how the short-term water vapor vari-
ability examined here relates to longer-term changes,
we compare the vertical structure of specific humidity

Figure 4. Zonally averaged vertical distribution in
moisture anomaly for the Community Climate System
Model (CCSM) (a) between the warmest and coldest decile
of months in the last 88 months of the twentieth century
integration of the CCSM, and (b) between the first and last
decade of the twentieth century integration.

12,439
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Conclusions

Climate trending with AIRS + IASI may need some new
approaches.

Years between AIRS Product versions: 5+

Overhead of producing all AIRS products is gigantic

Very complex algorithm

Simpler approachs with smaller datasets may be key in
engaging the scientific community with hyperspectral IR
for future climate studies.

We cannot just ignore AIRS and CrIS differences for
climate-level research.

Level 3 Algorithm does not estimate errors

Trending with AIRS Level 3 might? be problematic.

I believe we should seriously look at using AIRS L1c for
standard products and AIRS converted to CrIS for L3-oriented
science.
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